
1

Eito Murakami
December 2021

Pure Data EM Library

Overview:
I created a Pure Data library (temporarily called EM Library) that serves as both musical and

educational tools for learning the efficient way of patching in Pd. Traditionally, most Pd libraries have
aimed to provide objects that would eliminate the need to create complex patches. The EM Library,
however, encourages users to study and modify the patches as every abstraction in the library is made
entirely of the “vanilla” objects.

It is my hope that the library and this documentation serve as tutorials and templates for beginners
and students while promoting community standards for patching to enhance communication between
abstractions.

2

Patching Standards:
Pure Data offers users the freedom to patch objects in a variety of ways. Such flexibility,

however, sometimes makes it difficult to create efficient and legible patches as in the case of other
traditional programming languages. In the following section, I introduce patching standards that were
used in the library and explain their significance.

Inlet
1. The [inlet] (control value) object in a subpatch or abstraction is successively connected to the

following objects:
a. The data type object, such as [float] and [bang], to filter data types
b. The [clip] object to limit the range of the incoming value

2. The [inlet~] (signal) object is used whenever controlling audio-rate signals, such as a filter cutoff
frequency. It is successively connected to the following objects:

a. The [clip~] object to limit the range of the incoming signal
b. The [lop~] object if the incoming signal needs to be smoothed out

Outlet
1. If a signal is amplified inside a subpatch or abstraction, the [outlet~] object is connected to the

[clip~] object to prevent any unwanted distortion.

Argument
1. An argument for a control value or a signal that is shared with an inlet can be called by the

[loadbang] object connected to the [float] (f) object with “$ + the argument index”, such as $1.
a. For a control value, the output of the [float] object is connected to another [float] object

that is shared with the [inlet] object.
b. For a signal, the output of the [float] object is connected directly to the [inlet~] object.

The [inlet~] object will output the specified value until a signal is connected to the inlet.

3

Continuity using [lop~]
1. In order to avoid wave discontinuities, a low-pass filter is applied to a control value or a signal

that is controlling an audio-rate parameter. A cutoff frequency between 100 and 1000 Hz is used
for the [lop~] object depending on how responsive a signal must be.

$0 for [send], [receive], arrays, and tables
1. In order for multiple instances of an abstraction to be loaded in a single patch, “$0” is added to

the names used in the [send] and [receive] objects as well as arrays and tables. “$0” is a four-digit
number unique to an instance of abstraction.

[snapshot~]
1. While the [snapshot~] object is useful for converting a signal to a control value, it cannot be used

to control an audio-rate signal because it only outputs the sampled value at the end of an audio
block, which is 64 samples by default.

[trigger]
1. In order to maintain the order of operations, the [trigger] (t) object is used instead of connecting

an object directly to multiple objects.

[expr] “expr divide by zero detected”
1. When using the [expr] object, dividing a variable by another variable results in a warning “expr

divide by zero detected”. While this is not a fatal error, it can be avoided by using the “max()”
function such that a variable is always divided by a value other than zero.

4

[samplerate~]
1. In order for patches to function properly with any sample rates, the [samplerate~] object is used

for calculations involving the sample rate as opposed to hard coding the number, such as 44100.

Tables vs. Arrays
1. While arrays provide intuitive GUI, they take up high memory and CPU usage, especially if one

chooses to “save contents”. Tables are less expensive alternatives to arrays for saving a series of
values without GUI. The size of arrays and tables can be resized using the ”resize” message. As
previously noted, names of arrays and tables should begin with “$0” so that multiple instances of
an abstraction can be loaded in a single patch.

Miscellaneous
1. In order to make patches legible on any OS, objects are spaced at least 10 pixels apart.
2. Every patch is accompanied by a description of its functionality as well as comments explaining

the algorithm.

5

List of Objects

Audio Objects
- EM_bitcrusher~ (Bitcrusher using quantization)

- EM_width~ (Stereo width reducer using equal power panning)

- EM_map~ (Audio-rate I/O mapping function)

- EM_switch~ (DSP switch)

- EM_drywet~ (2-channel stereo crossfader with linear gain)

- EM_adsr~ (4-stage exponential envelope generator)

- EM_balance~ (Stereo balance controller using linear gain)

- EM_operator~ (FM synthesis operator)

- EM_additive~ (Additive synthesizer)

Utility Objects
- EM_clock (BPM clock generator using metro)

- EM_map (I/O mapping function)

- EM_loadnum (sends a float on load)

- EM_makegate (Gate generator)

- EM_16seq (16-step conditional sequencer)

- EM_stom (Symbol to MIDI converter)

- EM_mtos (MIDI to symbol converter)

GUI Objects
- EM_ktom (Computer keyboard to MIDI converter)

- EM_snapshot (snapshot~ with continuous bang~ at the block size of 64)

- EM_sampler (Single buffer stereo sampler with variable playback speed)

- EM_granular (10-voice looper/granular synthesizer)

- EM_scope (Oscilloscope with a variable table size))

Auxiliary Objects
- EM_randlist (Used in EM_granular to generate a list of random numbers without duplicates)

- EM_granular_voice (The voice abstraction for EM_granular)

- EM_trianglevoice (Triangle wave harmonic generator with a band-pass filter based on the

Gaussian curve)

6

- EM_additivevoice (The voice abstraction for EM_additive~)

